Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Syringyl-rich lignin renders poplars more resistant to degradation by wood decay fungi.

Identifieur interne : 002472 ( Main/Exploration ); précédent : 002471; suivant : 002473

Syringyl-rich lignin renders poplars more resistant to degradation by wood decay fungi.

Auteurs : Oleksandr Skyba [Canada] ; Carl J. Douglas ; Shawn D. Mansfield

Source :

RBID : pubmed:23396333

Descripteurs français

English descriptors

Abstract

In order to elucidate the effects of lignin composition on the resistance of wood to degradation by decay fungi, wood specimens from two transgenic poplar lines expressing an Arabidopsis gene encoding ferulate 5-hydroxylase (F5H) driven by the cinnimate-4-hydroxylase promoter (C4H::F5H) that increased syringyl/guaiacyl (S/G) monolignol ratios relative to those in the untransformed control wood were incubated with six different wood decay fungi. Alterations in wood weight and chemical composition were monitored over the incubation period. The results showed that transgenic poplar lines extremely rich in syringyl lignin exhibited a drastically improved resistance to degradation by all decay fungi evaluated. Lignin monomer composition and its distribution among cell types and within different cell layers were the sole wood chemistry parameters determining wood durability. Since transgenic poplars with exceedingly high syringyl contents were recalcitrant to degradation, where wood durability is a critical factor, these genotypes may offer improved performance.

DOI: 10.1128/AEM.03182-12
PubMed: 23396333
PubMed Central: PMC3623167


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Syringyl-rich lignin renders poplars more resistant to degradation by wood decay fungi.</title>
<author>
<name sortKey="Skyba, Oleksandr" sort="Skyba, Oleksandr" uniqKey="Skyba O" first="Oleksandr" last="Skyba">Oleksandr Skyba</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Wood Science, University of British Columbia, Vancouver, British Columbia, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Wood Science, University of British Columbia, Vancouver, British Columbia</wicri:regionArea>
<orgName type="university">Université de la Colombie-Britannique</orgName>
<placeName>
<settlement type="city">Vancouver</settlement>
<region type="state">Colombie-Britannique </region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Douglas, Carl J" sort="Douglas, Carl J" uniqKey="Douglas C" first="Carl J" last="Douglas">Carl J. Douglas</name>
</author>
<author>
<name sortKey="Mansfield, Shawn D" sort="Mansfield, Shawn D" uniqKey="Mansfield S" first="Shawn D" last="Mansfield">Shawn D. Mansfield</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:23396333</idno>
<idno type="pmid">23396333</idno>
<idno type="doi">10.1128/AEM.03182-12</idno>
<idno type="pmc">PMC3623167</idno>
<idno type="wicri:Area/Main/Corpus">002705</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002705</idno>
<idno type="wicri:Area/Main/Curation">002705</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002705</idno>
<idno type="wicri:Area/Main/Exploration">002705</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Syringyl-rich lignin renders poplars more resistant to degradation by wood decay fungi.</title>
<author>
<name sortKey="Skyba, Oleksandr" sort="Skyba, Oleksandr" uniqKey="Skyba O" first="Oleksandr" last="Skyba">Oleksandr Skyba</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Wood Science, University of British Columbia, Vancouver, British Columbia, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Wood Science, University of British Columbia, Vancouver, British Columbia</wicri:regionArea>
<orgName type="university">Université de la Colombie-Britannique</orgName>
<placeName>
<settlement type="city">Vancouver</settlement>
<region type="state">Colombie-Britannique </region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Douglas, Carl J" sort="Douglas, Carl J" uniqKey="Douglas C" first="Carl J" last="Douglas">Carl J. Douglas</name>
</author>
<author>
<name sortKey="Mansfield, Shawn D" sort="Mansfield, Shawn D" uniqKey="Mansfield S" first="Shawn D" last="Mansfield">Shawn D. Mansfield</name>
</author>
</analytic>
<series>
<title level="j">Applied and environmental microbiology</title>
<idno type="eISSN">1098-5336</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Arabidopsis (genetics)</term>
<term>Arabidopsis Proteins (genetics)</term>
<term>Cytochrome P-450 Enzyme System (genetics)</term>
<term>Fungi (metabolism)</term>
<term>Lignin (chemistry)</term>
<term>Lignin (genetics)</term>
<term>Lignin (metabolism)</term>
<term>Plants, Genetically Modified (metabolism)</term>
<term>Populus (metabolism)</term>
<term>Populus (microbiology)</term>
<term>Promoter Regions, Genetic (MeSH)</term>
<term>Wood (microbiology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Arabidopsis (génétique)</term>
<term>Bois (microbiologie)</term>
<term>Champignons (métabolisme)</term>
<term>Cytochrome P-450 enzyme system (génétique)</term>
<term>Lignine (composition chimique)</term>
<term>Lignine (génétique)</term>
<term>Lignine (métabolisme)</term>
<term>Populus (microbiologie)</term>
<term>Populus (métabolisme)</term>
<term>Protéines d'Arabidopsis (génétique)</term>
<term>Régions promotrices (génétique) (MeSH)</term>
<term>Végétaux génétiquement modifiés (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Lignin</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Arabidopsis Proteins</term>
<term>Cytochrome P-450 Enzyme System</term>
<term>Lignin</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Lignine</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Arabidopsis</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Arabidopsis</term>
<term>Cytochrome P-450 enzyme system</term>
<term>Lignine</term>
<term>Protéines d'Arabidopsis</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Fungi</term>
<term>Lignin</term>
<term>Plants, Genetically Modified</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Bois</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Populus</term>
<term>Wood</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Champignons</term>
<term>Lignine</term>
<term>Populus</term>
<term>Végétaux génétiquement modifiés</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Promoter Regions, Genetic</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Régions promotrices (génétique)</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In order to elucidate the effects of lignin composition on the resistance of wood to degradation by decay fungi, wood specimens from two transgenic poplar lines expressing an Arabidopsis gene encoding ferulate 5-hydroxylase (F5H) driven by the cinnimate-4-hydroxylase promoter (C4H::F5H) that increased syringyl/guaiacyl (S/G) monolignol ratios relative to those in the untransformed control wood were incubated with six different wood decay fungi. Alterations in wood weight and chemical composition were monitored over the incubation period. The results showed that transgenic poplar lines extremely rich in syringyl lignin exhibited a drastically improved resistance to degradation by all decay fungi evaluated. Lignin monomer composition and its distribution among cell types and within different cell layers were the sole wood chemistry parameters determining wood durability. Since transgenic poplars with exceedingly high syringyl contents were recalcitrant to degradation, where wood durability is a critical factor, these genotypes may offer improved performance.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">23396333</PMID>
<DateCompleted>
<Year>2013</Year>
<Month>10</Month>
<Day>21</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1098-5336</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>79</Volume>
<Issue>8</Issue>
<PubDate>
<Year>2013</Year>
<Month>Apr</Month>
</PubDate>
</JournalIssue>
<Title>Applied and environmental microbiology</Title>
<ISOAbbreviation>Appl Environ Microbiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Syringyl-rich lignin renders poplars more resistant to degradation by wood decay fungi.</ArticleTitle>
<Pagination>
<MedlinePgn>2560-71</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1128/AEM.03182-12</ELocationID>
<Abstract>
<AbstractText>In order to elucidate the effects of lignin composition on the resistance of wood to degradation by decay fungi, wood specimens from two transgenic poplar lines expressing an Arabidopsis gene encoding ferulate 5-hydroxylase (F5H) driven by the cinnimate-4-hydroxylase promoter (C4H::F5H) that increased syringyl/guaiacyl (S/G) monolignol ratios relative to those in the untransformed control wood were incubated with six different wood decay fungi. Alterations in wood weight and chemical composition were monitored over the incubation period. The results showed that transgenic poplar lines extremely rich in syringyl lignin exhibited a drastically improved resistance to degradation by all decay fungi evaluated. Lignin monomer composition and its distribution among cell types and within different cell layers were the sole wood chemistry parameters determining wood durability. Since transgenic poplars with exceedingly high syringyl contents were recalcitrant to degradation, where wood durability is a critical factor, these genotypes may offer improved performance.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Skyba</LastName>
<ForeName>Oleksandr</ForeName>
<Initials>O</Initials>
<AffiliationInfo>
<Affiliation>Department of Wood Science, University of British Columbia, Vancouver, British Columbia, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Douglas</LastName>
<ForeName>Carl J</ForeName>
<Initials>CJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Mansfield</LastName>
<ForeName>Shawn D</ForeName>
<Initials>SD</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>02</Month>
<Day>08</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Appl Environ Microbiol</MedlineTA>
<NlmUniqueID>7605801</NlmUniqueID>
<ISSNLinking>0099-2240</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029681">Arabidopsis Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C434470">guaiacyl monolignol</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9005-53-2</RegistryNumber>
<NameOfSubstance UI="D008031">Lignin</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9035-51-2</RegistryNumber>
<NameOfSubstance UI="D003577">Cytochrome P-450 Enzyme System</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.14.-</RegistryNumber>
<NameOfSubstance UI="C097486">CYP84A1 protein, Arabidopsis</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D017360" MajorTopicYN="N">Arabidopsis</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029681" MajorTopicYN="N">Arabidopsis Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003577" MajorTopicYN="N">Cytochrome P-450 Enzyme System</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005658" MajorTopicYN="N">Fungi</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008031" MajorTopicYN="N">Lignin</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D030821" MajorTopicYN="N">Plants, Genetically Modified</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011401" MajorTopicYN="N">Promoter Regions, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014934" MajorTopicYN="N">Wood</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>2</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>2</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>10</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23396333</ArticleId>
<ArticleId IdType="pii">AEM.03182-12</ArticleId>
<ArticleId IdType="doi">10.1128/AEM.03182-12</ArticleId>
<ArticleId IdType="pmc">PMC3623167</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Environ Microbiol. 2011 Jan;13(1):96-107</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21199251</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2011 Aug 5;333(6043):762-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21764756</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiology. 2002 Jun;148(Pt 6):1939-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12055313</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Agric Food Chem. 2003 Oct 8;51(21):6178-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14518941</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycol Res. 2005 Jan;109(Pt 1):115-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15736869</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Feb 10;106(6):1954-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19193860</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Biotechnol. 2009 Jun;20(3):348-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19502047</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2012 Apr;94(2):323-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22391968</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2012 Apr;194(1):91-101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22239166</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biodegradation. 2008 Jul;19(4):555-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17973193</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1997 Oct;63(10):3804-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16535705</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1991 Feb;57(2):374-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16348406</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1994 Apr;60(4):1383-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16349245</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1996 Jan;110(1):3-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12226169</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2008 Jul;10(7):1844-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18363712</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2008 Dec;74(23):7252-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18849459</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2011 Apr;13(4):1091-100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21261800</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2008 Aug 14;454(7206):841-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18704079</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Biotechnol. 2009 Jun;20(3):286-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19481436</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2000 May;22(3):223-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10849340</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2012;13:444</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22937793</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Biotechnol. 2011 Jun;22(3):312-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21600756</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Folia Microbiol (Praha). 2010 Sep;55(5):447-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20941579</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2009 Jun;75(12):4058-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19376920</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2008 Feb;26(2):169-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18259168</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2009 May;58(4):706-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19175772</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Jun;150(2):621-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19386808</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2010 Jun;76(11):3599-610</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20400566</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2009 Sep;84(3):465-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19343340</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Biol Sci. 2009;5(6):578-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19774110</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2011 Aug;102(16):7500-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21646018</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2012 Jun 29;336(6089):1715-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22745431</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 1993 Feb 1;300(2):551-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8434936</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2012;13:525</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23033934</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2008 Sep;99(14):6556-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18242083</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 Mar 18;105(11):4501-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18316744</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Prog. 1999 Oct 1;15(5):804-816</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10514250</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Canada</li>
</country>
<region>
<li>Colombie-Britannique </li>
</region>
<settlement>
<li>Vancouver</li>
</settlement>
<orgName>
<li>Université de la Colombie-Britannique</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Douglas, Carl J" sort="Douglas, Carl J" uniqKey="Douglas C" first="Carl J" last="Douglas">Carl J. Douglas</name>
<name sortKey="Mansfield, Shawn D" sort="Mansfield, Shawn D" uniqKey="Mansfield S" first="Shawn D" last="Mansfield">Shawn D. Mansfield</name>
</noCountry>
<country name="Canada">
<region name="Colombie-Britannique ">
<name sortKey="Skyba, Oleksandr" sort="Skyba, Oleksandr" uniqKey="Skyba O" first="Oleksandr" last="Skyba">Oleksandr Skyba</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002472 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002472 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:23396333
   |texte=   Syringyl-rich lignin renders poplars more resistant to degradation by wood decay fungi.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:23396333" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020